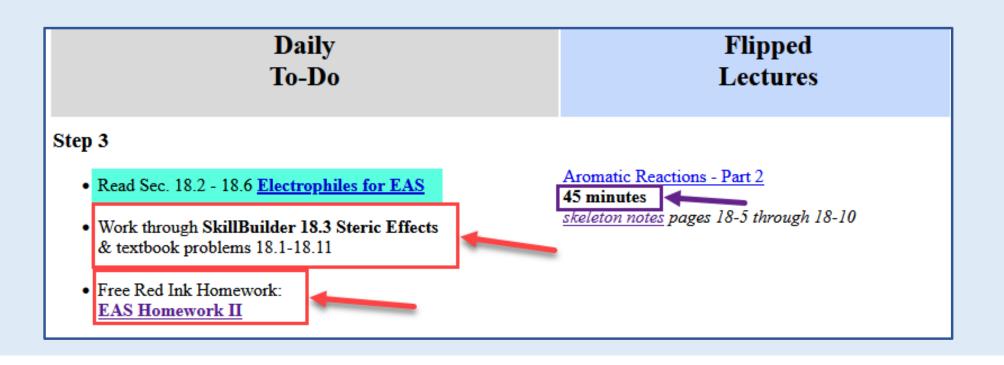

For clicker question voting, go to: https://pollev.com/lauriestarke263


Dr. Laurie S. Starkey Cal Poly Pomona

CHM 3150 Organic Chemistry II Announcements 11/13/25

Today's Topic: Electrophiles for EAS Reaction (Ch. 18)

Ch. 17/18 (Step 3)

- ✓ Watch
- ✓ Read
- **✓** Practice

Electrophiles for Electrophilic Aromatic Substitution		38:43
Reaction: Halogenation		38:44
Electrophiles for Electrophilic Aromatic Substitution		40:27
Reaction: Nitration		40:28
Electrophiles for Electrophilic Aromatic Substitution		41:45
Reaction: Sulfonation		41:46
Electrophiles for Electrophilic Aromatic Substitution		43:19
Reaction: Friedel-Crafts Alkylation		43:20
Electrophiles for Electrophilic Aromatic Substitution		45:43
Reaction: Friedel-Crafts Acylation		45:44
Electrophilic Aromatic Substitution: Nitration		46:52
Electrophilic Aromatic Substitution: Nitration	Ele etmendelle e	46:53
Mechanism	Electrophiles	48:56
Nitration of Aniline	for EAS	52:40
Nitration of Aniline Part 1		52:41
Nitration of Aniline Part 2: Why?	& Synthesis	54:12
Nitration of Aniline		56:10
Workaround: Protect Amino Group as an Amide		56:11
Electrophilic Aromatic Substitution: Sulfonation		58:16
Electrophilic Aromatic Substitution: Sulfonation		58:17
Example: Transform		59:25
Electrophilic Aromatic Substitution: Friedel-Crafts Alkylation		62:24
Electrophilic Aromatic Substitution: Friedel-Crafts Alkylation		62:25
Example & Mechanism		63:37
Friedel-Crafts Alkylation Drawbacks		65:48
A) Can Over-React (Dialkylation)		65:49
Friedel-Crafts Alkylation Drawbacks		68:21
B) Carbocation Can Rearrange		68:22
Mechanism		69:33
Friedel-Crafts Alkylation Drawbacks		73:35
Want n-Propyl? Use Friedel-Crafts Acylation		73:36
Reducing Agents		76:45
Synthesis with Electrophilic Aromatic Substitution		78:45
Example: Transform		78:46
Synthesis with Electrophilic Aromatic Substitution		80:59
Example: Transform		81:00

Flipped Lecture: Ch. 18 Aromatic Rxns (Part 2 of 3)

Assignments for Ch. 18: EAS#1 & EAS#2

California State Polytechnic University, Pomona

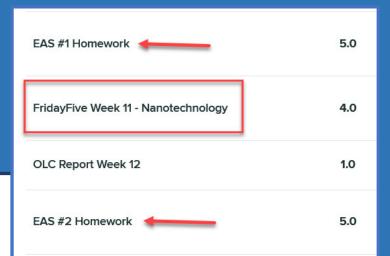
Organic Chemistry II CHM 3150, Dr. Laurie S. Starkey Electrophilic Aromatic Substitution (EAS) Homework I

Name: Section: (day/time)

A) Which would y hint: compare

B) Furan is known to give the 2-substituted compound as the major product. Explain why, using of the competing intermediates

California State Polytechnic University, Pomona

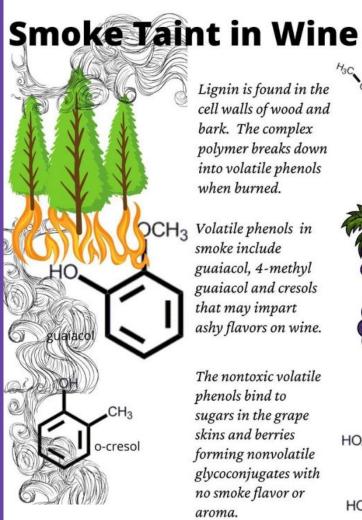

Organic Chemistry II, CHM 3150, Dr. Laurie S. Starkey Electrophilic Aromatic Substitution (EAS) Homework II


Name: Section: (day/time)

$$CH_3$$
 CH_3 CH_3

A) Provide a <u>complete</u> mechanism for the above Friedel-Crafts Reaction.

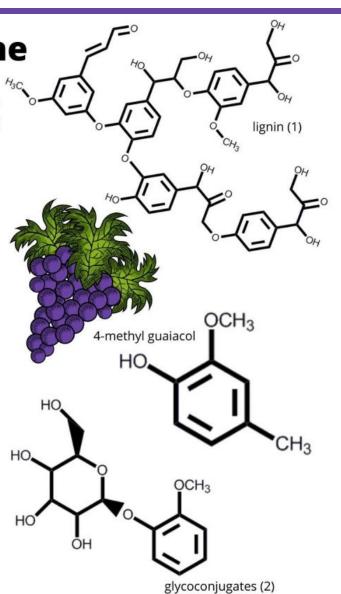
Pay close attention to details, including lone pairs, formal charges and the use of curved arrows.



Do you know what this weekend is?!

CHM 3150 Organic Chemistry II, Dr. Laurie S. Starkey, Fall 2025

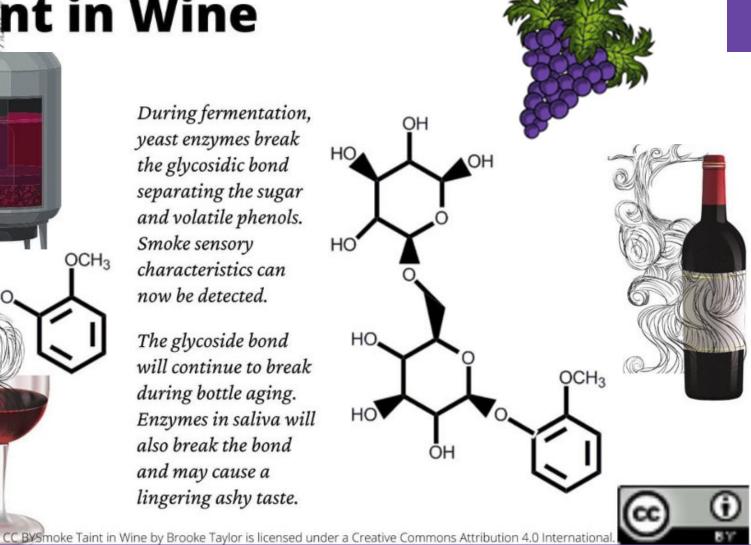
Tentative Schedule (Chapter and Worksheet #)


Week	Mon	Tues	Wed	Thurs	Fri
	10/20	10/21	10/22	10/23	10/24
9		Ch. 21 #1		c h. 21 # 2	
	10/27	10/28	10/29	10/30	10/31
10		Ch. 21 #3		Ch. 21 #4	
	11/3	11/4	11/5	11/6	11/7
11		Ch. 17 #1		Ch. 1//18 #2	
	11/10	11/11	11/12	11/13	11/14
12		Holiday		Ch. 17/18 #3	
	11/17	11/8	11/19	11/20	11/21
13		17/18 #4 Ch.22.10, 22.11		Ch. 16 # 1	
	11/24	11/25	11/26	11/27	11/28
14		Exam III		Holiday	Holiday

Lignin is found in the cell walls of wood and bark. The complex polymer breaks down into volatile phenols when burned.

OCH₃ Volatile phenols in smoke include guaiacol, 4-methyl guaiacol and cresols that may impart ashy flavors on wine.

> The nontoxic volatile phenols bind to sugars in the grape skins and berries forming nonvolatile glycoconjugates with no smoke flavor or aroma.


Phenols in smoke bind to sugars in grape skins

During fermentation, yeast enzymes break the glycosidic bond separating the sugar and volatile phenols. Smoke sensory characteristics can now be detected.

QCH₃

The glycoside bond will continue to break during bottle aging. Enzymes in saliva will also break the bond and may cause a lingering ashy taste.

